A Subatomic Proof System for Decision Trees

Chris Barrett, Alessio Guglielmi University of Bath

With special thanks to Andrea Aler Tubella, Anupam Das and Willem Heijltjes for numerous helpful exchanges

Overview

- Present a novel proof system for a conservative extension of classical propositional logic which includes decision trees
- Using the subatomic methodology ${ }^{1}$ to efficiently design (even discover) new deep inference proof systems
- An extremely simple cut elimination procedure
${ }^{1}$ Developed by Aler Tubella and Guglielmi

Decision Trees

- A decision tree (DT) is a binary tree of conditionals representing a boolean function $f:\{0,1\}^{|\mathcal{A}|} \rightarrow\{0,1\}$, for a set of variables $\mathcal{A}=\{a, b, c, \ldots\}$
- Each node labelled by a boolean variable and leaves labelled by 0 or 1

$(1 \mathrm{~b} 0) \mathrm{a}(\mathrm{OC} 1)$

- Evaluation:

$$
\llbracket B \text { a } C \rrbracket_{X}=\left\{\begin{array}{ll}
\llbracket B \rrbracket_{X} & \text { if } X(a)=0 \\
\llbracket C \rrbracket_{X} & \text { if } X(a)=1
\end{array}, \text { for } X: \mathcal{A} \rightarrow\{0,1\}\right.
$$

Deep Inference

- Allows free composition of derivations, horizontally via any connective of a given language, as well as via inference rules

for any connective β and inference rule r.
- Boxes are 2-dimensional brackets

Generalized Subatomic Language

- Suppose we wish to prove:

$$
(0 \text { a }(1 \text { b } 0)) \rightarrow(1 \text { b (0 a } 1))
$$

- To express implication, mix the language of DTs with propositional connectives
- Given a set of atoms \mathcal{A}, define our set of formulae:

$$
\mathcal{F} \quad::=1|0|(\mathcal{F} \wedge \mathcal{F})|(\mathcal{F} \vee \mathcal{F})|(\mathcal{F} \mathcal{A} \mathcal{F})
$$

- Atoms a $\in \mathcal{A}$ are treated as de Morgan self-dual variable left/right projections
- We can express classical propositional formulae using the embedding:

$$
a \rightsquigarrow(0 \text { a } 1) \quad \bar{a} \quad \rightsquigarrow \quad(1 \text { a } 0)
$$

- Formulae in the image of this embedding (i.e. those without 'nesting' of atoms) are interpretable in classical propositional logic

Generalized Subatomic Language

- Suppose we wish to prove:

$$
(0 \mathrm{a}(1 \mathrm{~b} 0)) \rightarrow(1 \mathrm{~b}(0 \mathrm{a} 1)) \quad \text { i.e. } \overline{(0 \mathrm{a}(1 \mathrm{~b} 0))} \vee(1 \mathrm{~b}(0 \mathrm{a} 1))
$$

- To express implication, mix the language of DTs with propositional connectives

$$
\mathcal{F} \quad::=1|0|(\mathcal{F} \wedge \mathcal{F})|(\mathcal{F} \vee \mathcal{F})|(\mathcal{F} \mathcal{A} \mathcal{F})
$$

- Atoms $a \in \mathcal{A}$ are treated as de Morgan self-dual variable left/right projections
- We can express classical propositional formulae using the embedding:

$$
a \rightsquigarrow(0 \quad a 1) \quad \bar{a} \quad \rightsquigarrow \quad(1 \text { a } 0)
$$

- Formulae in the image of this embedding (i.e. those without 'nesting' of atoms) are interpretable in classical propositional logic

Generalized Subatomic Language

- Suppose we wish to prove:

$$
(0 \mathrm{a}(1 \mathrm{~b} 0)) \rightarrow(1 \mathrm{~b}(0 \mathrm{a} 1)) \quad \text { i.e. } \quad(1 \mathrm{a}(0 \mathrm{~b} 1)) \vee(1 \mathrm{~b}(0 \mathrm{a} 1))
$$

- To express implication, mix the language of DTs with propositional connectives

$$
\mathcal{F} \quad::=1|0|(\mathcal{F} \wedge \mathcal{F})|(\mathcal{F} \vee \mathcal{F})|(\mathcal{F} \mathcal{A} \mathcal{F})
$$

- Atoms $a \in \mathcal{A}$ are treated as de Morgan self-dual variable left/right projections
- We can express classical propositional formulae using the embedding:

$$
a \rightsquigarrow(0 \text { a } 1) \quad \bar{a} \quad \rightsquigarrow \quad(1 \text { a } 0)
$$

- Formulae in the image of this embedding (i.e. those without 'nesting' of atoms) are interpretable in classical propositional logic
- We can prove (1 a (0 b 1)) $\vee(1 \mathrm{~b}(0 \mathrm{a} 1))$ by case analysis:

$$
\begin{array}{lll}
\bar{a} \rightarrow(1 \text { a }(0 \text { b } 1)) & \text { i.e. } & (0 \text { a } 1) \vee(1 \text { a }(0 \text { b } 1)) \\
a \rightarrow(1 \text { b }(0 \text { a } 1)) & \text { i.e. } & (1 \text { a } 0) \vee(1 \text { b }(0 \text { a } 1))
\end{array}
$$

	1		
	$\frac{1}{0 \vee 1}$		$=\frac{1}{1 \vee 0}$
	$(0$ a 1$) \vee(1 \mathrm{a} 0)$		

$$
\frac{1}{a \vee \bar{a}}
$$

- We can still express identity and cut as instances of more general inference rules acting on certain interpretable formulae

$$
\vee \frac{(A \vee B) \text { a }(C \vee D)}{(A \text { a } C) \vee(B \text { a } D)}
$$

- We can prove (1 a (0 b 1)) $\vee(1 \mathrm{~b}(0 \mathrm{a} 1))$ by case analysis:

$$
\begin{array}{lll}
\bar{a} \rightarrow(1 \mathrm{a}(0 \mathrm{~b} 1)) & \text { i.e. } & (0 \mathrm{a} 1) \vee(1 \mathrm{a}(0 \mathrm{~b} 1)) \\
\mathrm{a} \rightarrow(1 \mathrm{~b}(0 \mathrm{a} 1)) & \text { i.e. } & (1 \mathrm{a} 0) \vee(1 \mathrm{~b}(0 \mathrm{a} 1))
\end{array}
$$

1			
$(0 \vee 1)$ a $(1 \vee 0)$			
		0	
(0a1) \vee	1 a	$\omega_{1} \\|$	
		0 b 1	

- We can prove (1 a (0 b 1)) $\vee(1 \mathrm{~b}(0 \mathrm{a} 1))$ by case analysis:

$$
\begin{array}{lll}
\bar{a} \rightarrow(1 \mathrm{a}(0 \mathrm{~b} 1)) & \text { i.e. } & (0 \text { a } 1) \vee(1 \mathrm{a}(0 \mathrm{~b} 1)) \\
a \rightarrow(1 \mathrm{~b}(0 \text { a } 1)) & \text { i.e. } & (1 \text { a } 0) \vee(1 \mathrm{~b}(0 \text { a } 1))
\end{array}
$$

- We can prove $(1 \mathrm{a}(0 \mathrm{~b} 1)) \vee(1 \mathrm{~b}(0 \mathrm{a} 1))$ by case analysis:

- We can prove (1 a (0 b 1)) $\vee(1$ b (0 a 1)) by case analysis:

- We can prove (1 a (0 b 1)) $\vee(1$ b (0 a 1)) by case analysis:

Subatomic Methodology

- A single rule shape can generate all the standard inference rules for a variety of logics (MALL, BV, classical, ...) - including all just demonstrated
- How? Consider atoms as connectives: $a \rightsquigarrow(0$ a 1) and $\bar{a} \rightsquigarrow(1$ a 0$)$
- Regularity of rules: study of normalization is at once simplified and generalized
- Aler Tubella proves simple sufficient conditions for subatomic proof systems to enjoy cut elimination

The Rule Shape

- Given connectives α and β, we have dual instances of the shape: the $u p$ and down rules

$$
\alpha \hat{\beta} \frac{(A \beta B) \alpha(C \hat{\beta} D)}{(A \alpha C) \beta(B \alpha D)} \quad \beta \check{\alpha} \frac{(A \beta B) \alpha(C \beta D)}{(A \alpha C) \beta(B \check{\alpha} D)}
$$

- Decorations . . and \preceq shift connectives to their strong and weak counterparts respectively

Strong:	\wedge	\&	\otimes		
Weak:	v	\oplus	8		a

The Rule Shape

- Given connectives α and β, we have dual instances of the shape: the up and down rules

$$
\alpha \hat{\beta} \frac{(A \beta B) \alpha(C \hat{\beta} D)}{(A \alpha C) \beta(B \alpha D)} \quad \beta \check{\alpha} \frac{(A \beta B) \alpha(C \beta D)}{(A \alpha C) \beta(B \check{\alpha} D)}
$$

- Example:

$$
\begin{gathered}
\hat{\Lambda}=\wedge \quad \check{\wedge}=\vee \\
\hat{V}=\wedge \quad \check{\vee}=\vee \\
\hat{a}=\check{a}=a
\end{gathered}
$$

- The system $\mathrm{SKS}^{\text {sa }}$ for classical logic is generated by a subset of these rules, for $\alpha, \beta \in\{\wedge, \mathrm{V}\} \cup \mathcal{A}$

System SKS ${ }^{\text {sa }}$

- We can still express identity, cut and (co-)contraction as instances of the linear rule shape acting on interpretable formulae

System SKS ${ }^{\text {sa }}$

- We can still express identity, cut and (co-)contraction as instances of the linear rule shape acting on interpretable formulae

$$
\begin{array}{ll}
\text { Vâ } \frac{(A \text { a } B) \vee(C \text { a } D)}{(A \vee C) \text { a }(B \vee D)} & \text { } \hat{a} \frac{(A \text { a } B) \wedge(C \text { a } D)}{(A \wedge C) \text { a }(B \wedge D)} \\
\text { Vă } \frac{(A \vee B) \text { a }(C \vee D)}{(A \text { a } C) \vee(B \text { a } D)} & \wedge a ̆ \frac{(A \wedge B) \text { a }(C \wedge D)}{(A \text { a } C) \wedge(B \text { a } D)}
\end{array}
$$

- In system $\mathrm{SKS}^{\text {sa }}$, we consider only interpretable formulae in order to maintain a correspondence with the standard proofs of system SKS

System SKS ${ }^{\text {sa }}$

	vᄎ $\frac{(A \vee B) \vee(C \vee D)}{(A \vee C) \vee(B \vee D)}$	$\wedge \wedge \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$	$a \vee \frac{(A a B) \vee(C a D)}{(A \vee C) a(B \vee D)}$
Assoc/comm.	V ($A \vee B) \wedge(C \vee D)$		
	$\cdots \times(A \wedge C) \vee(B \vee D)$		
Switch and Medial	v($A \vee B) \mathrm{a}(C \vee D)$	($A \wedge B) \mathrm{a}(C \wedge D)$	
Identity and Cut	va $\overline{(A \text { a } C) \vee(B a D)}$	$\wedge a(A$ a $C) \wedge(B$ a $D)$	
(Co-) contraction	$(A \wedge B) \wedge(C \wedge D)$		
	$\cdots \wedge \overline{(A \wedge C) \wedge(B \wedge D)}$		
	$\wedge \vee(A \vee B) \wedge(C \wedge D)$		
	A) $(A \wedge C) \vee(B \wedge D)$		
	\wedge (A a $B) \wedge(C$ a $D)$		
	$(A \wedge C) a(B \wedge D)$		

System SKS ${ }^{\text {sa }}+$ Duplicates

	$\vee \stackrel{(A \vee B) \vee(C \vee D)}{(A \vee C) \vee(B \vee D)}$	$\wedge \stackrel{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$	$a \stackrel{(A \text { a } B) \vee(C \text { a } D)}{(A \vee C) \mathrm{a}(B \vee D)}$
Assoc/comm.	$\vee \star \frac{(A \vee B) \wedge(C \vee D)}{(A \wedge C) \vee(B \vee D)}$		
Switch and Medial Identity and Cut	vă $\frac{(A \vee B) \text { a }(C \vee D)}{(A \text { a } C) \vee(B \text { a } D)}$	^ă $\frac{(A \wedge B) \text { a }(C \wedge D)}{(A \text { a } C) \wedge(B \text { a } D)}$	
(Co-)contraction	$\wedge \wedge \frac{(A \wedge B) \wedge(C \wedge D)}{(A \wedge C) \wedge(B \wedge D)}$	$\vee \wedge \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$	$\mathrm{a} \wedge \frac{(A \wedge B) \mathrm{a}(C \wedge D)}{(A \mathrm{a} C) \wedge(B \mathrm{a} D)}$
	$\wedge \hat{\vee} \frac{(A \vee B) \wedge(C \wedge D)}{(A \wedge C) \vee(B \wedge D)}$		
	$\wedge \hat{a} \frac{(A \text { a } B) \wedge(C \text { a } D)}{(A \wedge C) \text { a }(B \wedge D)}$	$\vee \frac{(A \text { a } B) \vee(C \text { a } D)}{(A \vee C) \text { a }(B \vee D)}$	

System SKS ${ }^{\text {sa }}+$ Duplicates + Derivable Rules

	$\vee \stackrel{(A \vee B) \vee(C \vee D)}{(A \vee C) \vee(B \vee D)}$	$\wedge \stackrel{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$	$\mathrm{av} \frac{(A \text { a } B) \vee(C \mathrm{a} D)}{(A \vee C) \mathrm{a}(B \vee D)}$
Assoc/comm.	$\vee \times \frac{(A \vee B) \wedge(C \vee D)}{(A \wedge C) \vee(B \vee D)}$	$\wedge \wedge \frac{(A \wedge B) \wedge(C \wedge D)}{(A \wedge C) \wedge(B \vee D)}$	$\mathrm{a} \times \frac{(A \text { a } B) \wedge(C \mathrm{a} D)}{(A \wedge C) \mathrm{a}(B \vee D)}$
Switch and Medial Identity and Cut	vă $\frac{(A \vee B) \text { a }(C \vee D)}{(A \text { a } C) \vee(B \text { a } D)}$	\wedge ^a $\frac{(A \wedge B) \text { a }(C \wedge D)}{(A \text { a } C) \wedge(B \text { a } D)}$	
(Co-) contraction Derivable	$\wedge \wedge \frac{(A \wedge B) \wedge(C \wedge D)}{(A \wedge C) \wedge(B \wedge D)}$	$\vee \wedge \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$	$\mathrm{a} \wedge \frac{(A \wedge B) \mathrm{a}(C \wedge D)}{(A \text { a } C) \wedge(B \text { a } D)}$
	$\wedge \hat{\vee} \frac{(A \vee B) \wedge(C \wedge D)}{(A \wedge C) \vee(B \wedge D)}$	$\vee \hat{v} \frac{(A \vee B) \vee(C \wedge D)}{(A \vee C) \vee(B \vee D)}$	$\mathrm{a} \hat{(} \frac{(A \vee B) \mathrm{a}(C \wedge D)}{(A \mathrm{a} C) \vee(B \mathrm{a} D)}$
	$\wedge \hat{a} \frac{(A \text { a } B) \wedge(C \text { a } D)}{(A \wedge C) \text { a }(B \wedge D)}$	$\vee \frac{(A \text { a } B) \vee(C \text { a } D)}{(A \vee C) \text { a }(B \vee D)}$	

System DT ${ }^{\text {saa }}$: All Rules Generated By One Shape!

Assoc/comm.

Switch and Medial

Identity and Cut
(Co-) contraction

Derivable

Reordering DTs

$\vee \check{\vee} \frac{(A \vee B) \vee(C \vee D)}{(A \vee C) \vee(B \vee D)}$
$\vee \times \frac{(A \vee B) \wedge(C \vee D)}{(A \wedge C) \vee(B \vee D)}$
$\vee a ̆ \frac{(A \vee B) \text { a }(C \vee D)}{(A \text { a } C) \vee(B \text { a } D)}$

$\wedge \check{\wedge} \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$
$\wedge \times \frac{(A \wedge B) \wedge(C \wedge D)}{(A \wedge C) \wedge(B \vee D)}$
\wedge ă $\frac{(A \wedge B) \text { a }(C \wedge D)}{(A \text { a } C) \wedge(B \text { a } D)}$

$\mathrm{a} \check{\check{c}} \frac{(A \text { a } B) \vee(C \text { a } D)}{(A \vee C) \mathrm{a}(B \vee D)}$
$\mathrm{a} \times \frac{(A \text { a } B) \wedge(C \text { a } D)}{(A \wedge C) \mathrm{a}(B \vee D)}$
$\mathrm{ab} \frac{(A \text { a } B) \mathrm{b}(C \text { a } D)}{(A \text { b } C) \mathrm{a}(B \text { b } D)}$

$\wedge \hat{\wedge} \frac{(A \wedge B) \wedge(C \wedge D)}{(A \wedge C) \wedge(B \wedge D)}$
$\wedge \hat{\wedge} \frac{(A \vee B) \wedge(C \wedge D)}{(A \wedge C) \vee(B \wedge D)}$
$\wedge \hat{a} \frac{(A \text { a } B) \wedge(C \text { a } D)}{(A \wedge C) \text { a }(B \wedge D)}$

$\vee \hat{\wedge} \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}$
$\vee \hat{\vee} \frac{(A \vee B) \vee(C \wedge D)}{(A \vee C) \vee(B \vee D)}$
$\vee \hat{a} \frac{(A \text { a } B) \vee(C \text { a } D)}{(A \vee C) \text { a }(B \vee D)}$

$\mathrm{a} \wedge \frac{(A \wedge B) \mathrm{a}(C \wedge D)}{(A \text { a } C) \wedge(B \times D)}$
$\mathrm{a} \hat{\wedge} \frac{(A \vee B) \mathrm{a}(C \wedge D)}{(A \text { a } C) \vee(B \mathrm{a} D)}$
$\mathrm{ab} \frac{(A \mathrm{~b} B) \mathrm{a}(C \mathrm{~b} D)}{(A \text { a } C) \mathrm{b}(B \text { a } D)}$

Reordering Decsion Trees

- To include the new rule, we must consider a natural generalization of interpretable formulae

The Rule Shape

- Given connectives α and β, we define dual instances of the shape: the $u p$ and down rules

$$
\alpha \hat{\beta} \frac{(A \beta B) \alpha(C \hat{\beta} D)}{(A \alpha C) \beta(B \alpha D)} \quad \beta \check{\alpha} \frac{(A \beta B) \alpha(C \beta D)}{(A \alpha C) \beta(B \check{\alpha} D)}
$$

- The system $\mathrm{SKS}^{s a}$ is generated by a subset of these rules, for $\alpha, \beta \in\{\wedge, \vee\} \cup \mathcal{A}$
- The system $\mathrm{DT}^{s a}$ is generated by all the rules, for $\alpha, \beta \in\{\wedge, \vee\} \cup \mathcal{A}$
- Thus, system DT ${ }^{\text {sa }}$ really is just the shape!

Completeness

- We can prove within the system the semantic equivalence:

$$
C \text { a } D \leftrightarrow(C \wedge(1 \text { a } 0)) \vee((0 \text { a } 1) \wedge D)
$$

- This construction is invertible, and its inversion is also cut-free

Completeness

- We can prove within the system the semantic equivalence:

$$
C \text { a } D \leftrightarrow(C \wedge(1 \text { a } 0)) \vee((0 \text { a } 1) \wedge D)
$$

- This allows us to reduce completeness of $\mathrm{DT}^{s a}$ to that of $\mathrm{SKS}^{s a}$, which is known.

Cut Elimination

1

- We call a cut on a those inferences interpretable as a cut in SKS on atoms a and \bar{a}

Definition (Informal)

The left (right) projection on a of a derivation ϕ is a derivation $I_{a} \phi\left(r_{a} \phi\right)$ defined by replacing every occurence of B a C with $B(C)$, i.e replace every atom a with the left (right) projection operator and simplify. Fix the broken inference rules in the obvious way.

$=$	$\frac{1}{(0 \vee 1) \wedge}$$1 \vee$0 $l_{\mathrm{a}} \omega_{2} \\|$ 1 b $\vee \wedge$
	$=\frac{(0 \wedge 1) \vee(1 \vee(1 \mathrm{~b} 0))}{1 \vee(1 \mathrm{~b} 0)}$

Cut Elimination

Theorem
The cut rule is admissible.
$l_{a} B$ a $r_{a} B$
For every formula B, there exists a cut-free derivation:

Cut Elimination

Theorem

The cut rule is admissible.
For every formula B, there exists a cut-free derivation:

$$
\begin{gathered}
I_{\mathrm{a}} B \text { a } r_{\mathrm{a}} B \\
\times \|_{B}
\end{gathered}
$$

Given a proof ϕ of B, containing a cut on a, construct:

Iterating this process yields a cut-free proof.

Conclusion

- Given connectives α and β, we define dual instances of the shape: the up and down rules

$$
\alpha \hat{\beta} \frac{(A \beta B) \alpha(C \hat{\beta} D)}{(A \alpha C) \beta(B \alpha D)} \quad \beta \check{\alpha} \frac{(A \beta B) \alpha(C \beta D)}{(A \alpha C) \beta(B \check{\alpha} D)}
$$

- System $\mathrm{DT}^{\text {sa }}$ discovered via the subatomic methodology
- Defined as the natural 'completion' of system $\mathrm{SKS}^{\text {sa }}$: generated by all rules rather than a subset of rules, for $\alpha, \beta \in\{\wedge, \vee\} \cup \mathcal{A}$
- Thus, system $D^{\text {sa }}$ really is just the shape!
- Adding more rules gets us a system even simpler than classical propositional logic
- Proof of cut elimination becomes a triviality

References

- Kai Brünnler and Alwen Fernanto Tiu, A local system for classical logic, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) (R. Nieuwenhuis and Andrei Voronkov, eds.), Lecture Notes in Computer Science, vol. 2250, Springer-Verlag, 2001, pp. 347-361.
- Alessio Guglielmi, Tom Gundersen, and Michel Parigot, A proof calculus which reduces syntactic bureaucracy, Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2010.
- Benjamin Ralph, Modular normalisation of classical proofs, Ph.D. thesis, University of Bath, 2019.
- Andrea Aler Tubella and Alessio Guglielmi, Subatomic proof systems: Splittable systems, ACM Transactions on Computational Logic (TOCL) 19 (2018).
- Ingo Wegener, Branching programs and binary decision diagrams, Society for Industrial and Applied Mathematics, 2000.

DT Weakenings

- It is possible to introduce redundancy into decision trees

- For every formula A, B, C and D and atom a $\in \mathcal{A}$, we can construct cut-free derivations which we call $D T$-weakenings:

Cut Elimination: Construction

Lemma

$l_{a} B$ a $r_{a} B$

For every formula B, there exists a cut-free derivation:
Idea: Reading bottom to top, re-order B using invertible inferences so that atom a is at the root, eliminating any redundant copies of the atom a using DT-weakenings.
Proof.
Structural induction on B :
If we have that $B \equiv(C \beta D)$, for $\beta \neq a$ (thus $\left.l_{\mathrm{a}} B=l_{\mathrm{a}} C \beta \mathrm{l}_{\mathrm{a}} D, r_{\mathrm{a}} B=r_{\mathrm{a}} C \beta r_{\mathrm{a}} D\right)$, construct:

Cut Elimination: Construction

Lemma

Proof.
In the remaining case that $B \equiv(C$ a $D)$ (thus $\left.l_{\mathrm{a}} B=I_{\mathrm{a}} C, r_{\mathrm{a}} B=r_{\mathrm{a}} D\right)$, we can construct:

where ω is two instances of DT-weakening.

