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Overview

» Present a novel proof system for a conservative extension of classical propositional
logic which includes decision trees

» Using the subatomic methodology® to efficiently design (even discover) new deep
inference proof systems

» An extremely simple cut elimination procedure

1Developed by Aler Tubella and Guglielmi



Decision Trees

» A decision tree (DT) is a binary tree of conditionals representing a boolean
function f: {0, 1}|A| — {0, 1}, for a set of variables A = {a, b, c,...}

» Each node labelled by a boolean variable and leaves labelled by 0 or 1
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Deep Inference

» Allows free composition of derivations, horizontally via any connective of a given
language, as well as via inference rules
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for any connective B and inference rule r.

» Boxes are 2-dimensional brackets



Generalized Subatomic Language

» Suppose we wish to prove:
0Oa(lb0)—(1b(0al)

» To express implication, mix the language of DTs with propositional connectives

v

Given a set of atoms A, define our set of formulae:

F ou= 1|0[(FAF)|(FVF)|(FAF

v

Atoms a € A are treated as de Morgan self-dual variable left/right projections

» We can express classical propositional formulae using the embedding:

a ~ (0al) a ~ (laQ

v

Formulae in the image of this embedding (i.e. those without ‘nesting’ of atoms)
are interpretable in classical propositional logic
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» We can prove (1 a (0 b 1)) vV (1b(0a1l)) by case analysis:
a—(la(@Obl)) ie (0al)Vv(la(0bl))
a—>(1b((0al) ie
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» We can still express identity and cut as instances of more general inference rules

acting on certain interpretable formulae
(AV B)a(CvVD)

(Aa C)V (B aD)

va



» We can prove (1 a (0 b 1)) vV (1b(0a1l)) by case analysis:
a—(la(@Obl)) ie (0al)Vv(la(0bl))
a—>((1b(0al) ie (LaO)Vv(Lb(0al)

1
0V 1)a(lVO0)

va

0
O0al)vila w1||
Ob1l




» We can prove (1 a (0 b 1)) vV (1b(0a1l)) by case analysis:
a—(la(@Obl)) ie (0al)Vv(la(0bl))
a—>((1b(0al) ie (LaO)Vv(Lb(0al)
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» We can prove (1a (0b 1)) vV (1b(0a1l)) by case analysis:
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» We can prove (1a (0b 1)) vV (1b(0a1l)) by case analysis:
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» We can prove (1a (0b 1)) vV (1b(0a1l)) by case analysis:
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Subatomic Methodology

v

A single rule shape can generate all the standard inference rules for a variety of
logics (MALL, BV, classical, ...) - including all just demonstrated

v

How? Consider atoms as connectives: a~+ (0 a 1) and 3~ (1 a 0)

v

Regularity of rules: study of normalization is at once simplified and generalized

v

Aler Tubella proves simple sufficient conditions for subatomic proof systems to
enjoy cut elimination



The Rule Shape

» Given connectives a and B, we have dual instances of the shape: the up and down
rules
,2ABB)a(CBD)  (ABB)a(CBD)
(Aa C)B(B aD) (Aa C)B (B & D)

» Decorations 7 and ! shift connectives to their strong and weak counterparts

respectively
Strong: |A| |&| |®
Weak: |V| |&]| |?¥



The Rule Shape

» Given connectives a and B, we have dual instances of the shape: the up and down

rules
GE(ABB)G(CBD) jsABB)a(CBD)
(Aa C)B (B aD) (Aa C)B (B & D)
» Example: ) )
AN=AN A=V
V=A V=V
a=4d=a

» The system SKS*? for classical logic is generated by a subset of these rules, for

a,B€{NVIUA



System SKS*

» We can still express identity, cut and (co-)contraction as instances of the linear
rule shape acting on interpretable formulae
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System SKS*

» We can still express identity, cut and (co-)contraction as instances of the linear

rule shape acting on interpretable formulae

(Aa B)V(CaD)

va

(AvV C)a (BVD)

(AV B) a (CV D)

va

(Aa C)V (B aD)

(AaB)A(CaD)
(AAC)a (BAD)

(AAB)a(CAD)
(Aa C)A(Ba D)

» In system SKS*? , we consider only interpretable formulae in order to maintain a
correspondence with the standard proofs of system SKS



System SKS*

Assoc/comm.
Switch and Medial
Identity and Cut

(Co—)contraction
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System SKS*? + Duplicates

Assoc/comm.
Switch and Medial
Identity and Cut

(Co—)contraction
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System SKS*? + Duplicates + Derivable Rules

Assoc/comm.
Switch and Medial

Identity and Cut

Derivable

AVvB)v(CvD)| [ (ArB)V(CAD)| | (AaB)v(CaD)
avovevo |V avosBevp| TavoaBvD)
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ArC)V(BAD)| | (AvCvBvD)| | (AaC)v(BaD)
AaB)A(CaD)| | _(AaB)Vv(CaD)
“ArC)a(BAD)| | (AVC)a(BVD)




System DT*?: All Rules Generated By One Shape!

Assoc/comm.
Switch and Medial

Identity and Cut

Derivable

Reordering DTs

(AvB)v(cvD)| [ (ArnBV(CAD)| | (AaB)Vv(CaD)
avovevo |V avosBevp| TavoaBvD)
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JAVBIA(CAD)| [ (AVB)V(CAD)| [ (AVB)a(CAD)
(AA C)V (B A D) (AV C)V (BV D) (Aa C)V(BaD)
AaB)A(CaD)| | (AaB)v(CaD) | (AbB)a(CbD)
(AAC)a (BAD) (AV C)a (BV D) (Aa C)b (B aD)




Reordering Decsion Trees

» To include the new rule, we must consider a natural generalization of interpretable
formulae



The Rule Shape

» Given connectives a and B, we define dual instances of the shape: the up and
down rules

,2ABBla(CBD)  (ABB)a(CBD)
(Aa C)B (B a D) (Aa C)B (B & D)

v

The system SKS*? is generated by a subset of these rules, for o, € {A,V} U A
The system DT* is generated by all the rules, for o, B € {A,V} U A
Thus, system DT*? really is just the shape!

v

v



Completeness

» We can prove within the system the semantic equivalence:
CaD < (CA(LaQ)V(0al)AD)

C D
cvo 'l Dvo
Va
C 0 0 D
e | | oo
CAL e g OAD 1AD
Aa V| Aa
CacC DaD
| [A(ta0) Oa1nAl |
C D

» This construction is invertible, and its inversion is also cut-free



Completeness

» We can prove within the system the semantic equivalence:
CaD < (CA(1a0)V(0al)AD)
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» This allows us to reduce completeness of DT*? to that of SKS*?, which is known.



Cut Elimination
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» We call a cut on a those inferences interpretable as a cut in SKS on atoms a and a
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Definition (Informal)

The left (right) projection on a of a derivation ¢ is a derivation ;¢ (r2¢) defined by
replacing every occurence of B a C with B (C), i.e replace every atom a with the left
(right) projection operator and simplify. Fix the broken inference rules in the obvious

way.
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Cut Elimination

Theorem

The cut rule is admissible.
LB arB

For every formula B, there exists a cut-free derivation: ”



Cut Elimination

Theorem
The cut rule is admissible.
LB arB
For every formula B, there exists a cut-free derivation: ”
Given a proof ¢ of B, containing a cut on a, construct:
_ 1
1 1 1
Jq - di
LB raB
B a a
A

Iterating this process yields a cut-free proof.
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» For every formula B, there exists a cut-free derivation:

VA

1v

0
-

Ob1l

(1AO)V ((0b 1)V (1b 1))

(0Ob1)Vv(1b1)

LBarB

||
B




VA

(OVI1) A |1V|he|

0

1b0

(OA1)V(1V(1bO0)

1V (1boO)

VA

1V|rn

0

w| ||alov -—

Ob1l

(LAO)V((0b1)V(lb1)

(Ob1)Vv(Lb1)

(la(0b1l) v

ba

(1b0)

a(lbl)

lal
1

b(al)




Conclusion

» Given connectives a and B, we define dual instances of the shape: the up and
down rules

sABBa(CBD)  (ABB)a(CBD)
(Aa C)B (B aD) (Aa C)B (B & D)

» System DT*? discovered via the subatomic methodology

» Defined as the natural ‘completion’ of system SKS*? : generated by all rules rather
than a subset of rules, for @, B € {A,V} U A

» Thus, system DT really is just the shape!
» Adding more rules gets us a system even simpler than classical propositional logic

» Proof of cut elimination becomes a triviality
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DT Weakenings

» It is possible to introduce redundancy into decision trees

o
a/ \c a\
“—> /
A/ \B A C

» For every formula A, B, C and D and atom a € A, we can construct cut-free
derivations which we call DT-weakenings:

AacC Aa(BalC()

(AaB)aC AaC



Cut Elimination: Construction

Lemma
LB arB

For every formula B, there exists a cut-free derivation: ”

B

Idea: Reading bottom to top, re-order B using invertible inferences so that atom a is at
the root, eliminating any redundant copies of the atom a using DT-weakenings.

Proof.
Structural induction on B:
If we have that B = (C B D), for B # a (thus LB =1LC B LD, B =r,C B r,D),

construct:
Bv(lac B D) a (r.C B raD)
a

LCarnC LD aryD

of 18] vl
C D




Cut Elimination: Construction

Lemma
LB arB

For every formula B, there exists a cut-free derivation: ||

B
Proof.
In the remaining case that B = (C a D) (thus ,B = ,C, r,B = r,D), we can
construct:

LC anrD
o

LCanC| |LDarnD
of a4
C D

where w is two instances of DT-weakening.

O



