
A Subatomic Proof System for Decision Trees

Chris Barrett, Alessio Guglielmi
University of Bath

With special thanks to Andrea Aler Tubella, Anupam Das and Willem Heijltjes for
numerous helpful exchanges

Overview

I Present a novel proof system for a conservative extension of classical propositional
logic which includes decision trees

I Using the subatomic methodology1 to efficiently design (even discover) new deep
inference proof systems

I An extremely simple cut elimination procedure

1Developed by Aler Tubella and Guglielmi

Decision Trees
I A decision tree (DT) is a binary tree of conditionals representing a boolean

function f : {0, 1}|A| → {0, 1}, for a set of variables A = {a, b, c , . . .}
I Each node labelled by a boolean variable and leaves labelled by 0 or 1

I Evaluation:

JB a CKX = {
JBKX if X (a) = 0
JCKX if X (a) = 1

, for X : A → {0, 1}

Deep Inference

I Allows free composition of derivations, horizontally via any connective of a given
language, as well as via inference rules

A

C

::= A |
A1

C1

β
A2

C2

|

A

B
r

B ′

C

for any connective β and inference rule r .

I Boxes are 2-dimensional brackets

Generalized Subatomic Language

I Suppose we wish to prove:(0 a (1 b 0)) → (1 b (0 a 1))
I To express implication, mix the language of DTs with propositional connectives
I Given a set of atoms A, define our set of formulae:

F ::= 1 | 0 | (F ∧ F) | (F ∨ F) | (F A F)
I Atoms a ∈ A are treated as de Morgan self-dual variable left/right projections
I We can express classical propositional formulae using the embedding:

a (0 a 1) ā (1 a 0)
I Formulae in the image of this embedding (i.e. those without ‘nesting’ of atoms)

are interpretable in classical propositional logic

Generalized Subatomic Language

I Suppose we wish to prove:(0 a (1 b 0)) → (1 b (0 a 1)) i .e. (0 a (1 b 0)) ∨ (1 b (0 a 1))
I To express implication, mix the language of DTs with propositional connectives

F ::= 1 | 0 | (F ∧ F) | (F ∨ F) | (F A F)
I Atoms a ∈ A are treated as de Morgan self-dual variable left/right projections
I We can express classical propositional formulae using the embedding:

a (0 a 1) ā (1 a 0)
I Formulae in the image of this embedding (i.e. those without ‘nesting’ of atoms)

are interpretable in classical propositional logic

Generalized Subatomic Language

I Suppose we wish to prove:(0 a (1 b 0)) → (1 b (0 a 1)) i .e. (1 a (0 b 1)) ∨ (1 b (0 a 1))
I To express implication, mix the language of DTs with propositional connectives

F ::= 1 | 0 | (F ∧ F) | (F ∨ F) | (F A F)
I Atoms a ∈ A are treated as de Morgan self-dual variable left/right projections
I We can express classical propositional formulae using the embedding:

a (0 a 1) ā (1 a 0)
I Formulae in the image of this embedding (i.e. those without ‘nesting’ of atoms)

are interpretable in classical propositional logic

I We can prove (1 a (0 b 1)) ∨ (1 b (0 a 1)) by case analysis:

a→ (1 a (0 b 1)) i .e. (0 a 1) ∨ (1 a (0 b 1))
a→ (1 b (0 a 1)) i .e. (1 a 0) ∨ (1 b (0 a 1))

1=
1=

0 ∨ 1
a

1=
1 ∨ 0

∨ǎ (0 a 1) ∨ (1 a 0)
1

a ∨ ā

I We can still express identity and cut as instances of more general inference rules
acting on certain interpretable formulae(A ∨ B) a (C ∨ D)

∨ǎ (A a C) ∨ (B a D)

I We can prove (1 a (0 b 1)) ∨ (1 b (0 a 1)) by case analysis:

a→ (1 a (0 b 1)) i .e. (0 a 1) ∨ (1 a (0 b 1))
a→ (1 b (0 a 1)) i .e. (1 a 0) ∨ (1 b (0 a 1))

1= (0 ∨ 1) a (1 ∨ 0)
∨ǎ

(0 a 1) ∨ 1 a
0

ω1

0 b 1

I We can prove (1 a (0 b 1)) ∨ (1 b (0 a 1)) by case analysis:

a→ (1 a (0 b 1)) i .e. (0 a 1) ∨ (1 a (0 b 1))
a→ (1 b (0 a 1)) i .e. (1 a 0) ∨ (1 b (0 a 1))

1= (0 ∨ 1) a (1 ∨ 0)
∨ǎ

(0 a 1) ∨ 1 a
0

ω1

0 b 1

1= (1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0
a

1=
1 b 1

bǎ

1 a 1=
1

b (0 a 1)

I We can prove (1 a (0 b 1)) ∨ (1 b (0 a 1)) by case analysis:

1=
(0 ∨ 1) a (1 ∨ 0)

∨ǎ

(0 a 1) ∨ 1 a
0

ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0
a

1=
1 b 1

bǎ

1 a 1=
1

b (0 a 1)

I We can prove (1 a (0 b 1)) ∨ (1 b (0 a 1)) by case analysis:

1=
(0 ∨ 1) a (1 ∨ 0)

∨ǎ

(0 a 1) ∨ 1 a
0

ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0
a

1=
1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ ((0 a 1) ∧ (1 a 0)) ∨ ((1 a (0 b 1)) ∨ (1 b (0 a 1)))

I We can prove (1 a (0 b 1)) ∨ (1 b (0 a 1)) by case analysis:

1=
(0 ∨ 1) a (1 ∨ 0)

∨ǎ

(0 a 1) ∨ 1 a
0

ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0
a

1=
1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ (0 a 1) ∧ (1 a 0)

cut (0 ∧ 1) a (1 ∧ 0) ∨ ((1 a (0 b 1)) ∨ (1 b (0 a 1)))
= (1 a (0 b 1)) ∨ (1 b (0 a 1))

Subatomic Methodology

I A single rule shape can generate all the standard inference rules for a variety of
logics (MALL, BV, classical, ...) - including all just demonstrated

I How? Consider atoms as connectives: a (0 a 1) and ā (1 a 0)
I Regularity of rules: study of normalization is at once simplified and generalized
I Aler Tubella proves simple sufficient conditions for subatomic proof systems to

enjoy cut elimination

The Rule Shape

I Given connectives α and β, we have dual instances of the shape: the up and down
rules (A β B) α (C β̂ D)

αβ̂ (A α C) β (B α D) (A β B) α (C β D)
βα̌ (A α C) β (B α̌ D)

I Decorations .̂ and .̌ shift connectives to their strong and weak counterparts
respectively

Strong:

Weak:

∧

∨

&
⊕

⊗

`
a

a

The Rule Shape

I Given connectives α and β, we have dual instances of the shape: the up and down
rules (A β B) α (C β̂ D)

αβ̂ (A α C) β (B α D) (A β B) α (C β D)
βα̌ (A α C) β (B α̌ D)

I Example:
∧̂ = ∧ ∧̌ = ∨
∨̂ = ∧ ∨̌ = ∨

â = ǎ = a

I The system SKSsa for classical logic is generated by a subset of these rules, for
α, β ∈ {∧,∨} ∪ A

System SKSsa

I We can still express identity, cut and (co-)contraction as instances of the linear
rule shape acting on interpretable formulae

(0 a 1) ∨ (0 a 1)
∨â

0 ∨ 0=
0

a
1 ∨ 1=
1

a ∨ a

a

(0 a 1) ∧ (1 a 0)
∧â

0 ∧ 1=
0

a
1 ∧ 0=
0

a ∧ ā

0

1=
0 ∨ 1

a
1=

1 ∨ 0
∨ǎ (0 a 1) ∨ (1 a 0)

1

a ∨ ā

0=
0 ∧ 0

a
1=

1 ∧ 1
∧ǎ (0 a 1) ∧ (0 a 1)

a

a ∧ a

System SKSsa

I We can still express identity, cut and (co-)contraction as instances of the linear
rule shape acting on interpretable formulae

(A a B) ∨ (C a D)
∨â (A ∨ C) a (B ∨ D) (A a B) ∧ (C a D)

∧â (A ∧ C) a (B ∧ D)
(A ∨ B) a (C ∨ D)

∨ǎ (A a C) ∨ (B a D) (A ∧ B) a (C ∧ D)
∧ǎ (A a C) ∧ (B a D)

I In system SKSsa , we consider only interpretable formulae in order to maintain a
correspondence with the standard proofs of system SKS

System SKSsa

Assoc/comm.

Switch and Medial

Identity and Cut

(Co−)contraction

(A ∨ B) ∨ (C ∨ D)
∨∨̌ (A ∨ C) ∨ (B ∨ D) (A ∧ B) ∨ (C ∧ D)

∧∨̌ (A ∨ C) ∧ (B ∨ D) (A a B) ∨ (C a D)
a∨̌ (A ∨ C) a (B ∨ D)(A ∨ B) ∧ (C ∨ D)

∨∧̌ (A ∧ C) ∨ (B ∨ D)(A ∨ B) a (C ∨ D)
∨ǎ (A a C) ∨ (B a D) (A ∧ B) a (C ∧ D)

∧ǎ (A a C) ∧ (B a D)
(A ∧ B) ∧ (C ∧ D)

∧∧̂ (A ∧ C) ∧ (B ∧ D)(A ∨ B) ∧ (C ∧ D)
∧∨̂ (A ∧ C) ∨ (B ∧ D)(A a B) ∧ (C a D)
∧â (A ∧ C) a (B ∧ D)

System SKSsa + Duplicates

Assoc/comm.

Switch and Medial

Identity and Cut

(Co−)contraction

(A ∨ B) ∨ (C ∨ D)
∨∨̌ (A ∨ C) ∨ (B ∨ D) (A ∧ B) ∨ (C ∧ D)

∧∨̌ (A ∨ C) ∧ (B ∨ D) (A a B) ∨ (C a D)
a∨̌ (A ∨ C) a (B ∨ D)(A ∨ B) ∧ (C ∨ D)

∨∧̌ (A ∧ C) ∨ (B ∨ D)(A ∨ B) a (C ∨ D)
∨ǎ (A a C) ∨ (B a D) (A ∧ B) a (C ∧ D)

∧ǎ (A a C) ∧ (B a D)
(A ∧ B) ∧ (C ∧ D)

∧∧̂ (A ∧ C) ∧ (B ∧ D) (A ∧ B) ∨ (C ∧ D)
∨∧̂ (A ∨ C) ∧ (B ∨ D) (A ∧ B) a (C ∧ D)

a∧̂ (A a C) ∧ (B a D)(A ∨ B) ∧ (C ∧ D)
∧∨̂ (A ∧ C) ∨ (B ∧ D)(A a B) ∧ (C a D)
∧â (A ∧ C) a (B ∧ D) (A a B) ∨ (C a D)

∨â (A ∨ C) a (B ∨ D)

System SKSsa + Duplicates + Derivable Rules

Assoc/comm.

Switch and Medial

Identity and Cut

(Co−)contraction
Derivable

(A ∨ B) ∨ (C ∨ D)
∨∨̌ (A ∨ C) ∨ (B ∨ D) (A ∧ B) ∨ (C ∧ D)

∧∨̌ (A ∨ C) ∧ (B ∨ D) (A a B) ∨ (C a D)
a∨̌ (A ∨ C) a (B ∨ D)(A ∨ B) ∧ (C ∨ D)

∨∧̌ (A ∧ C) ∨ (B ∨ D) (A ∧ B) ∧ (C ∧ D)
∧∧̌ (A ∧ C) ∧ (B ∨ D) (A a B) ∧ (C a D)

a∧̌ (A ∧ C) a (B ∨ D)(A ∨ B) a (C ∨ D)
∨ǎ (A a C) ∨ (B a D) (A ∧ B) a (C ∧ D)

∧ǎ (A a C) ∧ (B a D)
(A ∧ B) ∧ (C ∧ D)

∧∧̂ (A ∧ C) ∧ (B ∧ D) (A ∧ B) ∨ (C ∧ D)
∨∧̂ (A ∨ C) ∧ (B ∨ D) (A ∧ B) a (C ∧ D)

a∧̂ (A a C) ∧ (B a D)(A ∨ B) ∧ (C ∧ D)
∧∨̂ (A ∧ C) ∨ (B ∧ D) (A ∨ B) ∨ (C ∧ D)

∨∨̂ (A ∨ C) ∨ (B ∨ D) (A ∨ B) a (C ∧ D)
a∨̂ (A a C) ∨ (B a D)(A a B) ∧ (C a D)

∧â (A ∧ C) a (B ∧ D) (A a B) ∨ (C a D)
∨â (A ∨ C) a (B ∨ D)

System DTsa: All Rules Generated By One Shape!

Assoc/comm.

Switch and Medial

Identity and Cut

(Co−)contraction
Derivable

Reordering DTs

(A ∨ B) ∨ (C ∨ D)
∨∨̌ (A ∨ C) ∨ (B ∨ D) (A ∧ B) ∨ (C ∧ D)

∧∨̌ (A ∨ C) ∧ (B ∨ D) (A a B) ∨ (C a D)
a∨̌ (A ∨ C) a (B ∨ D)(A ∨ B) ∧ (C ∨ D)

∨∧̌ (A ∧ C) ∨ (B ∨ D) (A ∧ B) ∧ (C ∧ D)
∧∧̌ (A ∧ C) ∧ (B ∨ D) (A a B) ∧ (C a D)

a∧̌ (A ∧ C) a (B ∨ D)(A ∨ B) a (C ∨ D)
∨ǎ (A a C) ∨ (B a D) (A ∧ B) a (C ∧ D)

∧ǎ (A a C) ∧ (B a D) (A a B) b (C a D)
ab̌ (A b C) a (B b D)

(A ∧ B) ∧ (C ∧ D)
∧∧̂ (A ∧ C) ∧ (B ∧ D) (A ∧ B) ∨ (C ∧ D)

∨∧̂ (A ∨ C) ∧ (B ∨ D) (A ∧ B) a (C ∧ D)
a∧̂ (A a C) ∧ (B a D)(A ∨ B) ∧ (C ∧ D)

∧∨̂ (A ∧ C) ∨ (B ∧ D) (A ∨ B) ∨ (C ∧ D)
∨∨̂ (A ∨ C) ∨ (B ∨ D) (A ∨ B) a (C ∧ D)

a∨̂ (A a C) ∨ (B a D)(A a B) ∧ (C a D)
∧â (A ∧ C) a (B ∧ D) (A a B) ∨ (C a D)

∨â (A ∨ C) a (B ∨ D) (A b B) a (C b D)
ab̂ (A a C) b (B a D)

Reordering Decsion Trees

(A b B) a (C b D)
ab̂ (A a C) b (B a D)

I To include the new rule, we must consider a natural generalization of interpretable
formulae

The Rule Shape

I Given connectives α and β, we define dual instances of the shape: the up and
down rules

(A β B) α (C β̂ D)
αβ̂ (A α C) β (B α D) (A β B) α (C β D)

βα̌ (A α C) β (B α̌ D)
I The system SKSsa is generated by a subset of these rules, for α, β ∈ {∧,∨} ∪ A
I The system DTsa is generated by all the rules, for α, β ∈ {∧,∨} ∪ A
I Thus, system DTsa really is just the shape!

Completeness
I We can prove within the system the semantic equivalence:

C a D ↔ (C ∧ (1 a 0)) ∨ ((0 a 1) ∧ D)
C=

C ∨ 0
a

D=
D ∨ 0

∨ǎ

C=
C ∧ 1

a
0

C ∧ 0
∧ǎ

C a C

C

∧ (1 a 0)
∨

0

0 ∧ D

a
D=

1 ∧ D

∧ǎ

(0 a 1) ∧ D a D

D

I This construction is invertible, and its inversion is also cut-free

Completeness
I We can prove within the system the semantic equivalence:

C a D ↔ (C ∧ (1 a 0)) ∨ ((0 a 1) ∧ D)
C

C a C

∧ (1 a 0)
∧â

C ∧ 1=
C

a
C ∧ 0

0

∨

(0 a 1) ∧ D

D a D
∧â

0 ∧ D

0
a

1 ∧ D=
D

a∨̌
C ∨ 0=
C

a
0 ∨ D=
D

I This allows us to reduce completeness of DTsa to that of SKSsa, which is known.

Cut Elimination
1=

(0 ∨ 1) a (1 ∨ 0)
∨ǎ

(0 a 1) ∨ 1 a

0

ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0

a
1=

1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ (0 a 1) ∧ (1 a 0)

cut (0 ∧ 1) a (1 ∧ 0) ∨ (1 a (0 b 1)) ∨ (1 b (0 a 1))
= (1 a (0 b 1)) ∨ (1 b (0 a 1))

I We call a cut on a those inferences interpretable as a cut in SKS on atoms a and ā

1=

(0 ∨ 1) a (1 ∨ 0)
∨ǎ

(0 a 1) ∨ 1 a

0

ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0

a
1=

1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ (0 a 1) ∧ (1 a 0)

cut (0 ∧ 1) a (1 ∧ 0) ∨ (1 a (0 b 1)) ∨ (1 b (0 a 1))
= (1 a (0 b 1)) ∨ (1 b (0 a 1))

Definition (Informal)
The left (right) projection on a of a derivation φ is a derivation laφ (raφ) defined by
replacing every occurence of B a C with B (C), i.e replace every atom a with the left
(right) projection operator and simplify. Fix the broken inference rules in the obvious
way.

1=
(0 ∨ 1) a (1 ∨ 0)

∨ǎ

(0 a 1) ∨ 1 a

0
ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0

a
1=

1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ (0 a 1) ∧ (1 a 0)

cut (0 ∧ 1) a (1 ∧ 0) ∨ (1 a (0 b 1)) ∨ (1 b (0 a 1))
= (1 a (0 b 1)) ∨ (1 b (0 a 1))

1=
1 ∨

0
raω1

0 b 1

∧ 0 ∨
1=

1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)

1=

(1 ∨ 0)
1 ∨

0
ω1

0 b 1

∧

(0 ∨ 1)

0 ∨

1=
1 b 1

1=
1

b 1

∨∧̌

1 ∧ 0(1 ∧ 0) ∨ (0 b 1) ∨ (1 b 1)
= (0 b 1) ∨ (1 b 1)

1=
1 ∨

0
raω1

0 b 1

∧ 0 ∨
1=

1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)

1=

(0 ∨ 1) a (1 ∨ 0)
∨ǎ

(0 a 1) ∨ 1 a

0
ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0

a
1=

1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ (0 a 1) ∧ (1 a 0)

cut (0 ∧ 1) a (1 ∧ 0) ∨ (1 a (0 b 1)) ∨ (1 b (0 a 1))
= (1 a (0 b 1)) ∨ (1 b (0 a 1))

1=
(0 ∨ 1) ∧ 1 ∨

0
laω2

1 b 0
∨∧̌ (0 ∧ 1) ∨ (1 ∨ (1 b 0))=

1 ∨ (1 b 0)
1=

1 ∨
0

raω1

0 b 1

∧ 0 ∨
1=

1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)

1=

(0 ∨ 1)
0 ∨ 1

∧

(1 ∨ 0)

1 ∨

0
ω2

1 b 0

1=
1

b 0

∨∧̌

0 ∧ 1(0 ∧ 1) ∨ 1 ∨ (1 b 0)
= (1 ∨ (1 b 0)

1=
(0 ∨ 1) ∧ 1 ∨

0
laω2

1 b 0
∨∧̌ (0 ∧ 1) ∨ (1 ∨ (1 b 0))=

1 ∨ (1 b 0)
1=

1 ∨
0

raω1

0 b 1

∧ 0 ∨
1=

1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)

Cut Elimination

Theorem
The cut rule is admissible.

For every formula B , there exists a cut-free derivation:
laB a raB

χ

B

Cut Elimination

Theorem
The cut rule is admissible.

For every formula B , there exists a cut-free derivation:
laB a raB

χ

B
Given a proof φ of B , containing a cut on a, construct:

1
φ

B

1=
1

laφ

laB
a

1
raφ

raB

χ

B

Iterating this process yields a cut-free proof.

1=
(0 ∨ 1) a (1 ∨ 0)

∨ǎ

(0 a 1) ∨ 1 a

0
ω1

0 b 1

∧

(1 ∨ 0) a (0 ∨ 1)
∨ǎ

(1 a 0) ∨
0

ω2

1 b 0

a
1=

1 b 1

bǎ

1 a 1=
1

b (0 a 1)
∨∧̌ (0 a 1) ∧ (1 a 0)

cut (0 ∧ 1) a (1 ∧ 0) ∨ (1 a (0 b 1)) ∨ (1 b (0 a 1))
= (1 a (0 b 1)) ∨ (1 b (0 a 1))

1=
(0 ∨ 1) ∧ 1 ∨

0
laω2

1 b 0
∨∧̌ (0 ∧ 1) ∨ (1 ∨ (1 b 0))=

1 ∨ (1 b 0)
1=

1 ∨
0

raω1

0 b 1

∧ 0 ∨
1=

1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)

1=
1=

(0 ∨ 1) ∧ 1 ∨
0

laω2

1 b 0
∨∧̌ (0 ∧ 1) ∨ (1 ∨ (1 b 0))=

1 ∨ (1 b 0)
a

1=
1 ∨

0
raω1

0 b 1
∧ 0 ∨

1=
1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)
I For every formula B , there exists a cut-free derivation:

laB a raB

B

1=
1=

(0 ∨ 1) ∧ 1 ∨
0

laω2

1 b 0
∨∧̌ (0 ∧ 1) ∨ (1 ∨ (1 b 0))=

1 ∨ (1 b 0)
a

1=
1 ∨

0
raω1

0 b 1
∧ 0 ∨

1=
1 b 1

∨∧̌ (1 ∧ 0) ∨ ((0 b 1) ∨ (1 b 1))= ((0 b 1) ∨ (1 b 1)
∨ǎ

(1 a (0 b 1)) ∨
(1 b 0) a (1 b 1)

bǎ

1 a 1=
1

b (0 a 1)

Conclusion

I Given connectives α and β, we define dual instances of the shape: the up and
down rules

(A β B) α (C β̂ D)
αβ̂ (A α C) β (B α D) (A β B) α (C β D)

βα̌ (A α C) β (B α̌ D)
I System DTsa discovered via the subatomic methodology
I Defined as the natural ‘completion’ of system SKSsa : generated by all rules rather

than a subset of rules, for α, β ∈ {∧,∨} ∪ A
I Thus, system DTsa really is just the shape!
I Adding more rules gets us a system even simpler than classical propositional logic
I Proof of cut elimination becomes a triviality

References

I Kai Brünnler and Alwen Fernanto Tiu, A local system for classical logic, Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR) (R. Nieuwenhuis and Andrei Voronkov, eds.), Lecture
Notes in Computer Science, vol. 2250, Springer-Verlag, 2001, pp. 347–361.

I Alessio Guglielmi, Tom Gundersen, and Michel Parigot, A proof calculus which reduces syntactic
bureaucracy, Proceedings of the 21st International Conference on Rewriting Techniques and
Applications, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2010.

I Benjamin Ralph, Modular normalisation of classical proofs, Ph.D. thesis, University of Bath, 2019.

I Andrea Aler Tubella and Alessio Guglielmi, Subatomic proof systems: Splittable systems, ACM
Transactions on Computational Logic (TOCL) 19 (2018).

I Ingo Wegener, Branching programs and binary decision diagrams, Society for Industrial and Applied
Mathematics, 2000.

DT Weakenings

I It is possible to introduce redundancy into decision trees

I For every formula A, B , C and D and atom a ∈ A, we can construct cut-free
derivations which we call DT-weakenings:

A a C

(A a B) a C

A a (B a C)
A a C

Cut Elimination: Construction

Lemma

For every formula B , there exists a cut-free derivation:
laB a raB

B

Idea: Reading bottom to top, re-order B using invertible inferences so that atom a is at
the root, eliminating any redundant copies of the atom a using DT-weakenings.

Proof.
Structural induction on B :
If we have that B ≡ (C β D), for β 6= a (thus laB = laC β laD, raB = raC β raD),
construct: (laC β laD) a (raC β raD)

βǎ
laC a raC

φ

C

β
laD a raD

ψ

D

Cut Elimination: Construction

Lemma

For every formula B , there exists a cut-free derivation:
laB a raB

B

Proof.
In the remaining case that B ≡ (C a D) (thus laB = laC , raB = raD), we can
construct:

laC a raD

ω

laC a raC

φ

C

a

laD a raD

ψ

D

where ω is two instances of DT-weakening.

